1 Prologue: Diophantine Problems in general

Given a subset S of \mathbb{C}, one can ask if a given polynomial equation $f(a_1, \ldots, a_n) = 0$ has any solutions in S. Generally if one wants a nice theory for this sort of thing, one takes S to be a subring of \mathbb{C}. We’ll call this a “diophantine equation over S” although the terminology may not be standard.

The difficulty of this depends upon what S is:

- $S = \mathbb{C}$.
- $S = \mathbb{R}$; decidable but painful.
- $S = \mathbb{Q}$; this is where most of the nice mathematical theories are; we don’t know whether this is decidable or not.
- $S = \mathbb{Z}$; this is undecidable in general.

Reductions: Diophantine problems over \mathbb{Q} can be reduced to Diophantine problems over \mathbb{Z}. Homogeneous diophantine problems over \mathbb{Z} are equivalent to the same problems over \mathbb{Q}.

If you want to know more about this, look at Bjorn Poonen’s website. If you want to know more about undecidability for \mathbb{Z}, ask Paul Valiant.

Of course, there are rings other than \mathbb{Z}. For example, $\mathbb{Z}/n = \mathbb{Z}/n\mathbb{Z} = \{\text{integers mod } n\}$. Finite rings are finite, but still:

- $S = \mathbb{Z}/p\mathbb{Z}$: see Josh’s handout.
- $S = \mathbb{Z}/p^n\mathbb{Z}$: see my handout. Also Hensel’s lemma.
- $S = \mathbb{Z}/n\mathbb{Z}$: CRT!

Cool stuff commented out: (Brief p-adics interlude. There are rings called \mathbb{Z}_p and \mathbb{Q}_p that I won’t talk about in class. Here’s why. A diophantine problem has a solution over \mathbb{Z}_p iff it has a solution over \mathbb{Z}/p^n for all n. Diophantine problems over \mathbb{Q}_p can be reduced to diophantine equations over \mathbb{Z}_p, likewise to \mathbb{Q} and \mathbb{Z}.)

Also you can do diophantine problems in polynomial rings; you saw one on Aaron’s handout and there’s another one below.
2 Techniques and Heuristics

But all is not lost! With persistence and ingenuity, our intrepid mathematicians can rescue many equations from the depths of unsolvedness!

- Sandwiching: e.g. if you want to prove that some expression \(X \) cannot be a perfect \(k \)th power, show that \(n^k < X < n^{k+1} \) for some \(n \). This method generalizes.

- If you’re looking to construct a solution, try clever algebraic specializations/substitutions. Always remember that linear is better than quadratic is better than cubic, etc. But it’s nice to make things factor! (Or at least have singularities.)

- Pythagorean triples.

- Pythagoras plus: how to get a general formula for rational solutions to \(ax^2 + by^2 = cz^2 \) if you already have a single solution. WARNING: this method does not work for integer solutions.

- Pell’s equation/recurrences.

- Infinite descent. Generally happens when your equation has a lot of symmetries, which generally happens with Pell-type equations.

- Quadratic Reciprocity and another reciprocity-ish law.

Quadratic reciprocity can be stated in the following form: let \(P(x) = x^2 + (-1)^{(p-1)/2}p \). Then if \(q \neq p \) is a prime, \(q \) divides \(P(a) \) for some integer \(a \) if and only if \(q \) is a square mod \(p \).

Let \(\Phi_n(x) \) be the \(n \)th cyclotomic polynomial. If \(q \) is a prime not dividing \(n \), \(q \) divides \(P(a) \) for some integer \(a \) if and only if \(q \) is 1 mod \(n \).

Exercises: Prove the statements above.

Cool optional stuff: Let \(\zeta_n \) be an \(n \)th root of unity. Let \(G \) be a subgroup of \(\mathbb{Z}/n\mathbb{Z}^* \) and \(\alpha_G = \sum_{g \in G} \zeta_n^g \). Let \(f_G(x) \) be the minimal polynomial of \(\alpha \). Then for all primes \(p \) not dividing some discriminant (which should be something like \(n \); what is it?) \(f_G \) has a root mod \(p \) (which is equivalent to \(f \) has \(n \) roots mod \(p \)) if and only if the reduction of \(p \) is an element of \(\alpha \).

Cool optional stuff: Example: \(G \) is the subgroup of quadratic residues. Exercise: \(f_G = x^2 \pm p \), where the sign depends upon what \(p \) is mod 4.

Cool optional stuff: Example: \(G = \{1, -1\}, n = 7 \). Then the polynomial is \(x^3 + x^2 - 2x - 1 \), which has root \(\zeta_7 + \zeta_7^{-1} \).

- Look beyond \(\mathbb{Z} \): factorizations in \(\mathbb{Z}[i] \) and \(\mathbb{Z}[\omega] \).

3 Examples

1 (TST 2002). Find in explicit form all ordered pairs of positive integers \(m, n \) such that \(mn - 1 \) divides \(m^2 + n^2 \).

2 (IMO Shortlist 2002). classic specialization problem. also on Team Contest. Is there an integer \(m \) such that the equation \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{m}{a + b + c} \) has infinitely many solutions in positive integers \(a, b, c \)?
3. reciprocity. *IMO shortlist. Move to example.* Find all integer solutions of the equation

\[
\frac{x^7 - 1}{x - 1} = y^5 - 1.
\]

4 (IMO Shortlist 2002). *classic example of sandwiching*

Let \(P \) be a cubic polynomial given by \(P(x) = ax^3 + bx^2 + cx + d \), where \(a, b, c, d \) are integers and \(a \neq 0 \). Suppose that \(xP(x) = yP(y) \) for infinitely many pairs \(x, y \) of integers with \(x \neq y \). Prove that the equation \(P(x) = 0 \) has an integer root.

Problems

5 (IMO Shortlist 2001). Consider the system

\[
x + y = z + u, \quad 2xy = zu.
\]

Find the greatest value of the real constant \(m \) such that \(m \leq x/y \) for any positive integer solution \((x, y, z, u) \) of the system, with \(x \geq y \).

6. Let \(\lambda \) be a complex number. Show that if \(a(x) \) is a rational function with complex coefficients such that

\[
a(x)(a(x) - 1)(a(x) - \lambda)
\]

is the square of a rational function, then \(a(x) \) is a constant function.

Descent by 2-isogeny; why can’t I do this?

7. Prove that there exists an integer \(m \geq 2002 \) and \(m \) distinct positive integers \(a_1, a_2, \ldots, a_m \) such that

\[
\prod_{i=1}^{m} a_i^2 - 4 \sum_{i=1}^{m} a_i^2
\]

is a perfect square.

8. Suppose that \(x, y \) are positive integers such that both \(x(y + 1), y(x + 1) \) are perfect squares. Show that exactly one of \(x, y \) is a perfect square.

extra?

9 (IMO Shortlist 2000). Show that for infinitely many \(n \), there exists a triangle with integer sidelengths such that its semiperimeter is \(n \) times its inradius.

10 (China, 2002). Sequence \(\{a_n\} \) satisfies: \(a_1 = 3, a_2 = 7, a_n^2 + 5 = a_{n-1}a_{n+1}, n \geq 2 \). If \(a_n + (-1)^n \) is prime, prove that there exists a nonnegative integer \(m \) such that \(n = 3^m \).

11 (MOP 2000?). Suppose \(p, N, D \) are positive integers such that

\[
p = x_1^2 + Dy_1^2
\]

\[Np = x_2^2 + Dy_2^2
\]

for some integers \(x_1, y_1, x_2, y_2 \). Then show that there are integers \(x, y \) such that \(N = x^2 + Dy^2 \).
12 (MOP 2007, Ramanujan?). Show that there exist infinitely many positive integers \(n\) such that
\[
 n = a^3 + b^3 = c^3 + d^3
\]
with for positive integers \(a, b, c, d\) with \(\{a, b\} \neq \{c, d\} \).

13 (MOP 02). Show that there are infinitely many ordered quadruples of integers \((x, y, z, w)\) such that all six of
\[
 xy + 1, xz + 1, xw + 1, yz + 1, yw + 1, zw + 1
\]
are perfect squares.

14 (IMO Shortlist 2003). An integer \(n\) is said to be good if \(|n|\) is not the square of an integer. Determine all integers \(m\) with the following property: \(m\) can be represented, in infinitely many ways, as a sum of three distinct good integers whose product is the square of an odd integer.

15 (MOP 98). Let \(p\) be a prime congruent to 3 mod 4, and let \(a, b, c, d\) be integers such that
\[
a^{2p} + b^{2p} + c^{2p} = d^{2p}.
\]
Show that \(p\) divides \(abc\).

5 Problems from the real world

These are diophantine equations over \(Q\) that I found in published math papers; they were constructed as examples of diophantine equations with certain properties (generally failure of local-to-global), but their solutions are elementary.

16 (Reichardt-Lind). Show that there are no rational solutions to the equation
\[
x^4 - 17y^4 = 2z^2.
\]

17 (Birch-Swinnerton-Dyer). Show that there are no rational solutions to the system of equations
\[
 uv = x^2 - 5y^2 \\
 (u + v)(u + 2v) = x^2 - 5z^2.
\]

18 (Swinnerton-Dyer). Show that if rational numbers \(x, y, z\) satisfy the equation
\[
x^2 + y^2 = (4z - 7)(z^2 - 2)
\]
then \(z \geq 7/4\).

6 Further Reading

These are written for mathematicians, so parts will be over your heads, but other parts are at your level.

Bright, Counterexamples to the Hasse Principle:
http://www.warwick.ac.uk/ maseap/arith/notes/elementary.pdf

Cox, Primes of the form \(x^2 + ny^2\). (The first third is written for people with a background of only elementary number theory.)

Noam Elkies, /On the Areas of Rational Triangles/.

Poonen, /Undecidability in Number Theory/ (?)